

# **LC Voltage-Controlled Oscillators**

Zhangwen Tang Advisor : Professor Hao Min

zwtang@fudan.edu.cn, http://10.12.240.202

Jun. 4th, 2004

ASIC & System State-Key Laboratory, Fudan University

Copyright © 2001-2004, All Rights Reserved by Zhangwen Tang

# Content

- Introduction
- Fundamentals of LC VCOs
- On-chip inductors
- □ Varactors and F-V tuning curve
- Optimization of LC VCOs
- □ Techniques of lowering phase noise
- Design examples
- Conclusion and prospect

# Introduction

Discrete TV Tuner Module

Novel Architecture for CMOS TV Tuner: *DLIF D*ouble Conversions with Low *IF* 



**DLIF Architecture of TV tuner for DVB system** 

### **Frequency Synthesizers**



### LC Voltage-Controlled Oscillators



CMOS Complementary Cross-coupled –G<sub>m</sub> LC VCO

# Outline

#### Introduction

#### Fundamentals of LC VCOs

- Oscillator views
- Mathematics of LC VCOs
- Structures of different LC-VCOs
- On-chip inductors
- Varactors and F-V tuning curve
- Optimization of LC VCOs
- Techniques of lowering phase noise
- Design examples
- Conclusion and prospect

#### **Oscillator Views**

Two-port view : feedback system



• Transfer function

$$\frac{V_{out}}{V_{in}}(s) = \frac{H(s)}{1 + H(s)}$$

• Barkhausen criterion

$$|H(j\omega_0)| \ge 1$$
 &  $\angle H(j\omega_0) = 180^\circ$ 

ASIC & System State-Key Laboratory, Fudan University

**One-port view : Negative Resistance** 



Active circuit

$$R_{active} = -R_P$$

• Inductance cancels capacitance

$$j\omega L = -\frac{1}{j\omega C}$$

#### **Ring Oscillator and LC Oscillator**

**Ring oscillator** 



Transfer function

$$H(s) = -\frac{A_0^n}{\left(1 + \frac{j\omega}{\omega_0}\right)^n}$$
$$\omega_{osc} = \omega_0 \cdot \tan\left(\frac{180^\circ}{N}\right) \quad A_0 = \sqrt{1 + \left(\tan\left(\frac{180^\circ}{N}\right)\right)^2}$$
$$\bullet Advantage: \qquad \text{Large tuning range}$$

• **Disadvantage:** High phase noise

ASIC & System State-Key Laboratory, Fudan University



•Advantage: •Disadvantage:

Low phase noise Small tuning range Inductors & MOS Varactor designs

#### Mathematics of LC VCOs



- Phase noise
- Oscillating amplitude
- Power dissipation

#### Narrowband LC VCOs

NMOS-only –G<sub>m</sub> LC VCO

Complementary MOS – G<sub>m</sub> LC VCO



ASIC & System State-Key Laboratory, Fudan University

[Ali Hajimiri, JSSC, May, 1999]

#### Wideband LC VCOs

#### Wideband LC VCO with Switched Capacitors



ASIC & System State-Key Laboratory, Fudan University

[A, Kral, A.A. Abidi, CICC, 1998]

#### Quadrature LC VCOs

Quadrature LC VCO with Superharmonic coupling

- Superharmonic coupling at Common-mode, S1 & S2
- Very simple two same LC-VCOs
- Low phase noise
- Low power dissipation



ASIC & System State-Key Laboratory, Fudan University

[S. L. J. Gierkink, JSSC, July, 2003]

# Outline

- Introduction
- Fundamentals of LC VCOs
- On-chip inductors
  - Inductor's Class
  - Modeling of on-chip inductors
  - Optimization of equivalent capacitance
  - **O** Quality Factor improvement
- Varactors and F-V tuning curve
- Optimization of LC VCOs
- Techniques of lowering phase noise
- Design examples
- Conclusion and prospect

#### Inductor's Class

Three types of On-chip inductors





On-chip spiral inductors

Gyrator-based active inductors (a) single-ended, (b) floating configurations ASIC & System State-Key Laboratory, Fudan University

# **Planar Spiral Inductor**

- Number of tuners, n
- Metal width, w
- Spacing, s
- Outer diameter,  $d_{out}$ Inner diameter,  $d_{in}$ Fill ratio,  $\rho = (d_{\alpha t} - d_{in})/(d_{\alpha t} + d_{in})$
- Number of sides, N









(c) Octagonal Spiral

(d) Circular Spiral

### **Multilayer Spiral Inductor**



# Modeling of On-chip Inductors

- EM Field Solver
  - ✤ High accuracy
  - Very slow
  - Complex for Spice
- Segmental circuit models
  - Simpler than EM field solver
  - Easy integration into Spice
- Compact, scalable, lumped circuit models
  - Simple, versatile and robust
  - Physical intuition

Characteristic of inductance of a typical integrated inductors with frequency



Frequency

# **Optimization of Equivalent Capacitance**

- What is the equivalent capacitance
  - ✤ At resonance frequency, the peak magnetic and electric energies are equal.
  - Given a peak voltage V<sub>0</sub>, electric energy is  $C_{eq}V_0^2/2$
- First resonance frequency f<sub>SR</sub>

$$f_{SR} = \left(2\pi\sqrt{L_{eq}C_{eq}}\right)^{-1}$$

- The proposed equivalent capacitance models
  - ✤ Electric energy in interlayer metals, C<sub>M-M</sub>
  - ✤ Electric energy in single metal to substrate, C<sub>M-S</sub>

# Electric Energy in $C_{M-M}$ and $C_{M-S}$



#### **Voltage Profile**



#### **Capacitance Coefficients** $C_{eq} = \kappa_1 C_1 + \kappa_2 C_2$



#### **Quality Factor Improvement**

• Pattern ground shield



Multipath metal



Dual reverse-bias PN-junction isolation in deep Nwell

Stop eddy current in skin channel



# Outline

- Introduction
- Fundamentals of LC VCOs
- On-chip inductors
- Varactors and F-V tuning curve
  - Varactors' class
  - **O** Period calculation of LC VCO with step-like varactors
- Optimization of LC VCOs
- Techniques of lowering phase noise
- Design examples
- Conclusion and prospect

#### Varactors' Class

• Four Types of Varactors in Silicon CMOS: PN Junction, Standard MOS, Inversion-MOS, Accumulation-MOS



#### **DC Capacitance of MOS Varactors**



#### **Step-like Varactors**



• Small-signal capacitance of step-like varactors

$$m{C}_{ss}(m{V}) = egin{cases} m{C}_{max} & m{V} \geq m{V}_{eff} \ m{C}_{min} & m{V} \leq m{V}_{eff} \end{cases}$$

• Effective control voltage 
$$V_{eff} = V_G - V_{ctrl} - V_{TH}$$
  
 $C_{ss}(V) = \frac{1}{2} (C_{max} + C_{min}) + \frac{1}{2} (C_{max} - C_{min}) sign(V - V_{eff})$ 

#### **Oscillating Waveforms in LC-Tank**

Oscillating waveforms at different V<sub>eff</sub> I-V locus of Step-like varactor



Two ellipses of different sizes joint with a step transition at  $V_{eff}$ 

## **Oscillating Period Calculation**

| Effective Control<br>Voltage, V <sub>eff</sub>      | Oscillating Period of LC Tank                                                                                                                                                                            |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>eff</sub> <v<sub>vdd—A<sub>min</sub></v<sub> | $T = T_{max} = 2\pi \sqrt{LC_{max}}$                                                                                                                                                                     |
| $V_{eff}$ > $V_{vdd}$ + $A_{max}$                   | $T = T_{min} = 2\pi \sqrt{LC_{min}}$                                                                                                                                                                     |
| $V_{vdd}$ – $A_{min}$ < $V_{eff}$ < $V_{vdd}$       | $T = \frac{1}{2} \left( T_{max} + T_{min} \right) + \frac{1}{\pi} \left( asin \left( \frac{ V_{eff} }{A_{min}} \right) T_{max} - asin \left( \frac{ V_{eff} }{\theta_1 A_{max}} \right) T_{min} \right)$ |
|                                                     | Ellipse Similar Factor $\theta_1 = \sqrt{1 - \left(\frac{V_{eff}}{A_{min}}\right)^2 + \left(\frac{V_{eff}}{A_{max}}\right)^2}$                                                                           |
| $V_{vdd} < V_{eff} < V_{vdd} + A_{max}$             | $T = \frac{1}{2} \left( T_{max} + T_{min} \right) + \frac{1}{\pi} \left( -asin \left( \frac{V_{eff}}{\theta_2 A_{min}} \right) T_{max} + asin \left( \frac{V_{eff}}{A_{max}} \right) T_{min} \right)$    |
|                                                     | Ellipse Similar Factor $\theta_2 = \sqrt{1 - \left(\frac{V_{eff}}{A_{max}}\right)^2 + \left(\frac{V_{eff}}{A_{min}}\right)^2}$                                                                           |

#### **Simulation Verification in HSPICE**



Simulation agrees well with the proposed calculation

### **Comparison with Others' Model**



Hegazi's effective capacitance model

$$C_{\text{eff}} = \frac{1}{2} \left( C_{\text{max}} + C_{\text{min}} \right) + \frac{1}{\pi} \left( C_{\text{min}} - C_{\text{max}} \right) \left( asin\left(\frac{V_{\text{eff}}}{A}\right) + \left(\frac{V_{\text{eff}}}{A}\right) \sqrt{1 - \left(\frac{V_{\text{eff}}}{A}\right)^2} \right)$$

• Point A

Point B

$$F_{eff,A} = \frac{2F_{min} \cdot F_{max}}{F_{min} + F_{max}}$$
$$F_{eff,B} = \frac{\sqrt{2}F_{min} \cdot F_{max}}{\sqrt{F_{min}^2 + F_{max}^2}}$$

 $F_{eff,B} \leq F_{eff,A}$ 

The reasons for difference between two method:

- a) Hegazi's model is small-signal analysis;
- b) Neglect 2rd and higher order harmonics;

#### Validation with Others' LC-VCOs

#### Frequency-Voltage Curves



[Y.B. Choi, 5<sup>th</sup> ASICON, 2003]

[H.L.Lao, 5<sup>th</sup> ASICON, 2003]

# Outline

- Introduction
- Fundamentals of LC VCOs
- On-chip inductors
- Varactors and F-V tuning curve
- Optimization of LC VCOs
  - O Low power design and low phase noise
  - Underlying physics of LC oscillators
  - **O** Optimization method: Linear and Geometric Programming
- Techniques of lowering phase noise
- Design examples
- Conclusion and prospect

#### Low-power Design

• Energy Conservation Theorem

$$\frac{CV_{peak}^2}{2} = \frac{LI_{peak}^2}{2}$$

• The loss in RLC tank

$$P_{loss} = RC^2 \omega_0^2 V_{peak}^2 = \frac{R}{L^2 \omega_0^2} V_{peak}^2$$

- Low-power design
  - ✤ Lower serial resistance R
  - Increase the tank inductance
  - Work at high frequency





[M. Tiebout, JSSC, Jul. 2001]

 $Q_{tank} = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR} = \frac{1}{R} \sqrt{\frac{L}{C}}$ 

#### Low-phase-noise Design

• Phase noise (SSCR)







- Low-phase-noise design
  - ✤ Lower serial resistance R
  - Increase the tank inductance
  - Increase amplitude voltage

### **Underlying Physics of LC Oscillators**



#### Noise-to-Carrier Rate, NCR

The equipartition theorem of thermodynamics states that: Any system in equilibrium has a mean energy of KT/2



$$E_{tank} \propto I_{tail}^2 / Lg_{tank}^2 \approx I_{tail}^2 / Lg_L^2$$
 (L – limited)

$$\frac{\langle V_n^2 \rangle}{V_{tank}^2} \propto \begin{cases} 1/E_{tank} \quad (L-limited) \\ L \quad (V-limited) \end{cases} \longrightarrow \frac{\langle V_n^2 \rangle}{V_{tank}^2} \propto \begin{cases} Lg_L^2 / I_{tail}^2 & (L-limited) \\ L & (V-limited) \end{cases}$$

ASIC & System State-Key Laboratory, Fudan University

[D. Ham and A. Hajimiri, JSSC, Jun. 2001]

### **Design Insight**



•  $Lg_L^2$  increasing with L

Startup condition Minimum tank amplitude Optimization at feasible point

#### • $Lg_L^2$ descreasing with L

Optimization at the verge of inductance-limited and voltagelimited regime

# LC VCO Topology



MOS transistors

$$W_n \quad L_n \quad W_p \quad L_p$$

• On-chip spiral inductors

• MOSCAP varators

$$C_{v,max}$$
  $C_{v,min}$ 

• Load cap and tail current





Equivalent oscillator model

#### **LC VCO Parameters**



### **Design Constraints**

(1) Power dissipation

$$I_{tail} \leq I_{max}$$

(2) Oscillator voltage amplitude

$$V_{tank} = \frac{I_{tail}}{g_{tank,max}} = \frac{2I_{tail}}{g_{on} + g_{op} + g_{v} + g_{L}} \approx \frac{2I_{tail}}{g_{L}} \ge V_{tank,min}$$

(3) Tuning range

$$L_{tamnk}C_{tank,min} \leq \frac{1}{\omega_{max}^{2}} \quad L_{tank}C_{tank,max} \geq \frac{1}{\omega_{min}^{2}}$$
$$(\omega_{max} - \omega_{min})/\omega = r_{t,min} \quad (\omega_{max} + \omega_{min})/2 = \omega$$

(4) Startup condition

$$g_{active} \geq lpha_{min} g_{tank,max}$$

(5) Maximum diameter of spiral inductor

$$d \leq d_{max}$$

etc. ...

### **Phase Noise Optimization**

• In 1/f<sup>2</sup> region, Phase noise (SSCR)

$$L\{\Delta\omega\} \propto \begin{cases} \frac{L^2 g_L^2}{I_{tail}} & (L-limited) \\ \frac{L^2 I_{tail}}{V_{sunpply}^2} & (V-limited) \end{cases} \xrightarrow{Lg_L \approx L(R_s/(L\omega)^2) = \frac{R_s}{L\omega^2}} L\{\Delta\omega\} \propto \begin{cases} \left(\frac{R_s}{L}\right)^2 \cdot \frac{1}{\omega^4 I_{tail}} & (L-limited) \\ \frac{L^2 I_{tail}}{V_{sunpply}^2} & (V-limited) \end{cases} \xrightarrow{Lg_L \approx L(R_s/(L\omega)^2) = \frac{R_s}{L\omega^2}} L\{\Delta\omega\} \propto \begin{cases} \left(\frac{R_s}{L}\right)^2 \cdot \frac{1}{\omega^4 I_{tail}} & (L-limited) \\ \frac{L^2 I_{tail}}{V_{sunpply}^2} & (V-limited) \end{cases}$$

[D. Ham, and A. Hajimiri, JSSC, 2001]

Proposed optimization equation

#### **Design strategy**

- Lower  $R_s/L$  of on-chip inductor, or select high  $Q_L$  inductor
- At maximum current I<sub>max</sub>
- At verge of *inductance-limited* and *voltage-limited* regime

#### **Graphical Optimization**



#### **Geometric Programming**

• What?

a special form of optimization problem:

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 1, \quad i=1,\ldots,m \\ & g_i(x)=1, \quad i=1,\ldots,p \\ & x_i>0, \qquad i=1,\ldots,n \end{array}$$

where  $f_i$  are posynomial and  $g_i$  are monomial

• Object Function: phase noise

$$L\{\Delta\omega\} = 10 \cdot \log\left(\frac{\Gamma_{rms}^2}{q_{max}^2} \cdot \frac{\overline{i_n^2}/\Delta f}{2 \cdot \Delta\omega^2}\right)$$

$$\Gamma(\omega_0 \tau) = \frac{c_0}{2} + \sum_{n=1}^{\infty} c_n \cos(n\omega_0 \tau + \theta_n) \qquad \qquad \sum_{n=0}^{\infty} c_n^2 = \frac{1}{\pi} \int_0^{2\pi} |\Gamma(x)|^2 dx = 2\Gamma_{rms}^2$$

# Outline

- Introduction
- Fundamentals of LC VCOs
- On-chip inductors
- Varactors and F-V tuning curve
- Optimization of LC VCOs
- Techniques of lowering phase noise
  - O Limited noise factor for white noise
  - Noise filtering techniques
  - Inductive control voltage
- Design examples
- Conclusion and prospect

#### Limited Noise Factor for White Noise



ASIC & System State-Key Laboratory, Fudan University

[F. Herzel and M . Tiebout, TCASII, Jan. 2000]

### Noise Sources of Close-in Phase Noise

- Flicker noise of tail current AM-FM modulation
- Flicker noise of differential pairs
   Differential pairs looks like a "Mixer".
   Flicker noise modulates the baseband and 2<sup>nd</sup> harmonics voltage at the tail.
- Varactor nonlinearity AM-FM modulation of common noise,

power and substrate noise.



Leeson's model

$$L\{\Delta\omega\} = 10 \cdot \log\left\{\frac{2FkT}{P_{s}} \cdot \left[1 + \left(\frac{\omega_{0}}{2Q_{L}\Delta\omega}\right)^{2}\right] \cdot \left(1 + \frac{\Delta\omega_{1/f^{3}}}{|\Delta\omega|}\right)\right\}$$

# Noise Filtering Techniques (1)

#### Large capacitor filter at common node



- Lower channel length modulation
- Filtering noise from tail current





# Noise Filtering Techniques (2)



#### Remove of tail current

 $V_{dd}$ 

Mp1 Mp2 L ww Х С Υ Mn1 Mn2 Zero S Mn3 Output Voltage oad Impedance

Roles of the tail current:

- Supply DC current
- Boost high impedance at common-source node
- Avoiding Q-degradation by triode region FETs

(a) Without tail current

ASIC & System State-Key Laboratory, Fudan University

[S. Levantino, JSSC, Aug. 2002]

(b) With tail current

High

# Noise Filtering Techniques (3)



- L1 & C1, L2 & C2 resonates at 2<sup>nd</sup> harnonic
- Boost the impedance at each common-source node, avoiding Q-degradation
- Improve the oscillating amplitude voltage, and voltage-limited moves into current-limited

ASIC & System State-Key Laboratory, Fudan University

[E. Hegazi, JSSC, Dec. 2001]

#### Inductive Control Voltage (Proposed)



- L3 & C3 resonates at 2<sup>nd</sup> harnonic
- Lower even harmonics in oscillating voltage
- The oscillating voltage is more symmetric in one period

# Outline

- Introduction
- Fundamentals of LC VCOs
- On-chip inductors
- Varactors and F-V tuning curve
- Optimization of LC VCOs
- Techniques of lowering phase noise
- Design examples
  - 1.08 GHz narrow LC VCO
  - O 1.0-2.0 GHz wideband LC VCO
- Conclusion and prospect

# Example I : 1.08GHz Narrowband LC VCO





- Chartered CMOS 0.35μm 2P4M RF/MS process
- 72-side inductor and A-MOS Varactor in Chartered library
- Die Size: 1120μm×820μm

#### Simulation and Measurement of F-V Curve



### Phase Noise (Simulation)





| Power Voltage         | 3.3V               |  |
|-----------------------|--------------------|--|
| Current               | 3.1mA              |  |
| Oscillating Frequency | 945MHz-1137MHz     |  |
| Tuning Range          | ±8.9%              |  |
| Phase Noise           | -82.2dBc/Hz@10kHz  |  |
| (Simulation)          | -108dBc/Hz@10kHz   |  |
|                       | -129.3dBc/Hz@10kHz |  |

- Simulation in Cadence SpectreRF : Bias at 3.1mA
- Phase Noise < -82.2dBc/Hz@10kHz

# Example II : 1-2 GHz Wideband LC VCO

- LC oscillator core
- Switched-capacitor array
- Switched-current array
- Encoder



L12

G S G

G S G

G

P+

NW

#### **Differential On-Chip Inductor**

| Core Diameter | <b>100</b> μM |  |
|---------------|---------------|--|
| Sides         | 16            |  |
| Turns         | 5             |  |
| Width         | 15 µM         |  |
| Spacing       | <b>1.5</b> μM |  |
| Inductance    | 5.2nH         |  |
| Single-end Q  | >5            |  |



#### **De-embeded PAD**





### Simulation and Measurement of F-V Curve



### Phase Noise (Simulation)



| Power Voltage         | 3.3V               |  |  |
|-----------------------|--------------------|--|--|
| Current               | 3.5-10mA           |  |  |
| Oscillating Frequency | 1041MHz-1968MHz    |  |  |
| Tuning Range          | ±31%               |  |  |
| Phase Noise           | -79dBc/Hz@10kHz    |  |  |
| (Simulation)          | -104.4dBc/Hz@10kHz |  |  |
|                       | -125.3dBc/Hz@10kHz |  |  |

- Simulation in Cadence SpectreRF : Bias at 1.15mA
- Phase Noise < -80dBc/Hz@10kHz</li>
- Die Size: 1120μm×1200μm

#### **PFTN** (Power-Frequency-Tuning-Normalized)

$$PFTN = 10\log\left[\frac{kT}{P_{sup}}\left(\frac{f_{tune}}{f_{off}}\right)^{2}\right] - L(f_{off})$$

| Reference | Process | Power  | f <sub>tune</sub> | Fo    | Phase noise | PFTN   | Order |
|-----------|---------|--------|-------------------|-------|-------------|--------|-------|
|           | (μm)    | (mW)   | (MHZ)             | (GHz) | (dBc/Hz)    | (dB)   |       |
| 1.08GHz   | 0.35    | 10.23  | 192               | 1.08  | -129@1MHz   | -8.94  | 7     |
| 1.1-2GHz  | 0.35    | 33     | 927               | 1.50  | -125@1MHz   | -4.35  | 3     |
| [13]      | 0.35    | 10     | 790               | 2.4   | -115@600kHz | -6.41  | 5     |
| [14]      | 0.7     | 24     | 81                | 1.8   | -115@200kHz | -20.46 | 9     |
| [15]      | 0.25    | 6      | 1                 | 1.8   | -121@600kHz | -56.15 | 10    |
| [16]      | 0.35    | 12     | 364               | 1.3   | -119@600kHz | -9.94  | 8     |
| [17]      | 0.25    | 20     | 270               | 1.86  | -143@3MHz   | -4.73  | 4     |
| [18]      | 0.25    | 7.25   | 1100              | 5.2   | -132@3MHz   | 0.87   | 1     |
| [19]      | 0.25    | 21.875 | 640               | 5.0   | -124@1MHz   | -7.08  | 6     |
| [20]      | 0.13    | 2.7    | 1900              | 4.6   | -112@1MHz   | -0.85  | 2     |

# Conclusions

- On-chip inductors
  - Equivalent capacitance
  - Differential multilayer inductor
  - Quality factor improvement techniques
- Varactors and F-V tuning curve
  - Period calculation of LC-VCO with step-like varactor
- Optimization of LC VCO
  - High Q inductor, Lower R<sub>s</sub>/L in on-chip inductor
- Techniques of lowering phase noise
  - Inductive control voltage
- Two design examples

# Prospect(1): Switched MIM-Cap Varactor



# **Prospect(2):** Varactor and Vaructor

- - *Variable Resonator: Varactor Variable Inductor: Vaructor*





### 1.08GHz LC VCO with MIM Varactors



- Simulation in SpectreRF
   F-V curves, 3.3mA
- Phase Noise < -89.7dBc/Hz@10kHz

ASIC & System State-Key Laboratory, Fudan University



- Better phase noise in LC-VCO with MIM Varactor than in one with MOS Varactor
- Simulation agrees well with the calculation
- TSMC 0.25µm 2P5M RF/MS process

TSMC CMOS 0.25um 1P5M RF/MS Process

### Acknowledgements

- Prof. Hao Min (Adivsor), Fudan University
- Prof. Chengshou Sun, Guoquang Zhang, Feng Zhou, Wenhong Li, Fudan University
- Prof. Qianling Zhang, Junyan Ren, Zengyu Zheng, Lianxing Yang, Zhiliang Hong, Dian Zhou, Fudan University
- Prof. Lingling Sun, Jiang Hu, HIZEE University
- Fuxiao Li, Zhengyu Zhu, No. 55 Institute of Science and Technology
- Prof. Xiaowei Sun, Rong Qian, Shanghai Institute of M.S & IT
- Hongyan Jian, Jie He, Shi Shu, Fengling Yang, TV Tuner Group
- Qiang Li, Yifeng Han, RFID Group, Haiqing Zhang, Yawei Guo
- MPW service at ICC
- Supported in part by Shanghai Science & Technology Committee under SDC Project
- Supported in part by Fudan-Infineon Joint Lab

http://10.12.240.202, Copyright © 2001-2004, Zhangwen Tang

# Thanks!