A Sub-0.75°RMS-Phase-Error Differentially-Tuned Fractional-*N* Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique

> Lei Lu, Lingbu Meng, Liang Zou, Hao Min and Zhangwen Tang

> Fudan University, Shanghai, China

Outline

- Motivation
- System Architecture
- Level Shifter for Symmetrical Tuning Curves
- High-PSR LDO Regulator
- Digital AFC with Monitor
- Measured Results
- Conclusions

Motivation

- Symmetrical tuning curves

 Level Shifters eliminate threshold voltage
- Large noise from power supply deteriorates VCO severely

 High-PSR LDO Regulator
- Frequency drift due to temperature variation

Control Voltage monitor to restart AFC

Single-Ended Tuned Synthesizer

- Advantage: Single-ended CP and VCO
- Disadvantage: Susceptible to CM noise, large LPF area

Differentially Tuned Synthesizer

- Advantage: Immune to CM noise, small LPF area (differential LPF)
- Disadvantage: differential CP and VCO

Synthesizer Block Diagram

Simplified differential LC-tank

- Differential tuning of VCO
 - Inversion MOS transistors as varactors

Conventional Differentially Tuned Techniques C_n $V_{\rm ocm} = (V_{\rm op} + V_{\rm on})/2$ V_{cn} O V_{on} V_{op} Vthn V_{thn}- $V_{\rm ccm} = (V_{\rm cp} + V_{\rm cn})/2$ V_{cn} $V_{\rm ocm}$ G₀1 V_{op}+V_{on})/2 $V_{\rm ocm} = ($ V_{cp} O V_{on} V_{op}

V_{thp}

/V_{thp}

8

/V_{thp}

Ср

V_{ocm}

Asymmetrical Tuning Curves

- Inversion MOS varactors have both ptype and n-type
 - Better choice in differentially tuned VCO than accumulation transistors
- Lead to asymmetrical tuning curves even if $V_{\rm ccm}$ is equal to $V_{\rm ocm}$ [See Soltanian, et al., CICC'06]
- The middle point of tuning curves deviates from V_{ocm} by V_{thn}+|V_{thp}|

High-PSR LDO Regulator

Simulated Noise and PSR of LDO

AFC and Voltage Monitor (1)

Flow chart

– 80 µs is enough for locking

AFC and Voltage Monitor (2)

Set two boundary for control voltages

 Ensure control voltages fall between them

Other Circuits Details

• VCO

Complementary cross-coupled transistors

Two tail inductors to lower the phase noise

Charge Pump

- Differentially configured
- Rail-to-rail CMFB

Loop Filter

On-chip MIM capacitor and high-res poly resistor

Delta sigma modulator & P/S Counter

Programmed using Verilog language

Measured Tuning Curves

- Tuning range: 1.2 ~ 2.1 GHz
- Coarse tuning: 8-bit control, 256 sub-bands

Measured Phase Noise

• Typical fractional-N case: 1.6135 GHz

-170.0

Phase Noise 10.00dB/ Ref -10.00dBc/Hz Carrier 1.613488865 GHz -6.4961 dBm -10.00 100 Hz H79.5898 dBb/Hz 1: -92.2033 dBc/Hz -96.0983 dBc/Hz 2: 1 kHz -20.00 3: 10 kHz -95.6048 dBc/Hz -123.2790 dBc/Hz 4: 100 kHz -30.00 1 MHz 10 MHz -148.5313 dBc/Hz 56: Noise = -40.00Analysis Range X: Band Marker Analysis Range Y: Band Marker Intg Noise: -42.8856 dBc / 40 MHz -50.00 RMS Noise: 10.1446 mrad -60.00581.244 mdeg RMS Jitter: 1.00067 psec Residual FM: 7.77897 kHz -70.00-80,00 Window Sandyrow -90.00 -100.0-110.0-120.0-130.0-140.0-150.0-160.0

10

心

1204

10A

Phase Noise With and Without LDO

Loop Bandwidth and Phase Error

Phase error: Integrated from 100 Hz to 40 MHz

Measured Locking Process

Locking time: 20 µs (6.4 µs for AFC)

Performance Summary

Technology	0.18-µm CMOS	
Die Area	1.47 mm × 1 mm	
Supply Voltage	1.8 V (VCO with 1.5 V)	
Current	16 mA	
Ref. Clock	25 MHz	
Output Freq.	1.2 GHz ~ 2.1 GHz	
Phase Noise	Integer-N	–100@10kHz
(dBc/Hz)	Fractional-N	–96@10kHz
Phase Error	Integer-N	<0.5° _{RMS}
	Fractional-N	<0.75° _{RMS}
Locking Time	20 µs	

Conclusions

- Have proposed level shifters to ensure symmetrical tuning curves
- Have demonstrated high-PSR LDO regulator
- Have introduced voltage monitor to overcome frequency drift
- Have achieved superior phase noise and phase error performance across the whole wideband tuning range