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Abstract— A differential high linearity low-noise amplifier
(LNA) based on a capacitor-cross-coupled topology is presented
in this paper. An off-chip balun is used for providing DC-bias
and canceling the channel thermal noise of the transconductance
MOS transistors. The LNA uses NMOS load and provides an
extra signal feed-forward and noise-canceling path. Analysis
shows that the noise contribution of the transconductance MOST
is only γ/20 and the noise figure (NF) of the proposed LNA is
1 + 0.2γ. The chip is implemented in a 0.18-μm MMRF CMOS
process. Measured results show that in 50M-860MHz frequency
range, the LNA achieved 15 dB gain, 2.5 dB NF, 8.3 dBm IIP3
and consumes only 4 mA current from a 1.8-V supply.

I. INTRODUCTION

The world-wide spread of high-definition digital television
(HDTV) promotes the research of the RF tuners and their
building blocks. Among all the DTV standards, the Digital
Video Broadcasting for Cable (DVB-C, 50M-860MHz) is
regarded as the most difficult one for single-chip integration
because of its low center-frequency and high bandwidth-to-
center-frequency ratio (BW/fc).

The low-noise amplifier (LNA) design is a challenge in
CMOS tuners. Besides the basic requirements on gain and
noise figure (NF), it needs to be fully differential to obtain
high common-mode restrain ratio (CMRR) and high even-
order harmonic restrain ability (IIP2). The fully differential
capacitor-cross-coupled (CCC) topology [1] is a good candi-
date for its high linearity and low power dissipation. However,
it suffers from high NF. The LNA exploiting a noise-canceling
technique [2] achieves very low NF over wide frequency band
but consumes too much power, e.g., for a differential topology,
the total current is greater than 20 mA [3].

Fig. 1 shows a double-conversion low-IF (DLIF) DVB-C
tuner RF architecture. An off-chip balun is used to transform
the single-ended signal received by the antenna to balanced
one for the differential-input LNA. In the traditional LNA
design, the balun is AC-coupled to the tuner chip and acts
only as a single-ended to differential (S-D) transformer. In this
paper, the balun and the LNA are DC-coupled, and a balun-
based noise-canceling technique is proposed. Analysis shows
that the proposed balun+LNA topology achieves the lowest
NF in all published CCC LNAs, and maintains the inherent
advantage of high linearity and low power.
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Fig. 1. A DZIF tuner architecture.

This paper is organized as follows: the balun+LNA topology
and the balun-based noise-canceling technique are introduced
in Section II. The balun impedance analysis and NF calcu-
lation are given in Section III. The chip implementation and
measurement results are given in Section IV, and Section V
concludes this work.

II. CCC LNA WITH OFF-CHIP BALUN

A traditional wide-band CCC common-gate (CG) LNA is
shown in Fig. 2. The differential signal from the off-chip
balun is AC-coupled to the source of the transconductance
MOS transistors, and then cross-coupled to the gate of the
opposite MOSTs through coupling capacitor C1,2, therefore
the effective transconductor is doubled without consuming
extra current. The source resistor RS1,2 (or current mirror)
provides the DC-bias. Only considering the channel thermal
noise of the transconductance MOSTs and assuming input
impedance is matched, the minimum NF of this LNA is [1]

F = 1 + γ/2 (1)

Comparing to the basic CG topology without C1,2 whose
NF is 1 + γ, the noise contribution of M1,2 is half reduced.
This can be explained in the noise-canceling point of view:
The channel thermal noise in flows through the small signal
impedance at OP and IP , causes two noise voltage vn,op and
vn,ip with opposite sign. Then vn,ip is coupled to the gate of
M2 by C1-R1 and amplified by the CS stage M2 to vn,on. The
inphase noise vn,on and vn,op reduced the output differential
mode noise voltage and thus reduced the NF. However, the
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Fig. 2. Traditional CCC LNA.
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Fig. 3. Proposed LNA schematic.

actual NF of Fig. 2 is still higher than 3 dB for a typical γ =
4/3 because of the noise contribution of RS1,2 and RL1,2. The
other drawback is that RS1,2 reduced the voltage headroom
and therefore reduced the linearity.

A DC-coupled balun+LNA topology is proposed to over-
come these problems, as shown in Fig. 3. The two balanced
ports of a transformer-type balun are directly connected to the
source of M1 and M2 respectively, with the center-tapped port
grounded providing DC-bias for the LNA. The first advantage
of this topology is that the source resistor RS1,2 and the off-
chip AC-coupled capacitors can be removed, while the S-D
transform function still remains. The load resistor RL1,2 is
replaced by NMOST M3,4 for two reasons: 1) The linearity
can be improved due to a “post-correction” approach [4]; 2)
NMOS loading with extra AC paths C3-R3 and C4-R4 can
improve the voltage gain and provide an extra noise-canceling
path [5]. From Fig. 3, it can be shown that there are now three
noise-canceling paths (in dot lines) which are:

1) The CCC path C1-R1 and CS stage M2. vn,ip is AC-
coupled to the gate of M2 by C1-R1, and then amplified to
vn,on by CS stage M2.

2) The balanced ports of the balun and CG stage M2. vn,ip is
transformer-coupled to vn,in by the balun, and then amplified
to vn,on by CG stage M2.

3) The extra feed-forward path C3-R3 and source follow
stage M3. vn,ip is AC-coupled to the gate of M3 by C3-R3,
and then followed to vn,op by source follow stage M3.

With these noise-canceling paths, the output differential-
mode noise of M1,2 is remarkable reduced, therefore the NF
can be very low.

III. PARAMETER CALCULATION

In this design, we choose a balun with the impedance ratio
1:1. The differential input impedance of the LNA is 1/gm, so
the input impedance matching condition is

gm = 1/RS (2)
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Fig. 4. A 1:1 balun model. (a) Original model. (b) De-coupled equivalent
circuit.

The voltage gain is

AV = 1 + 2gm1/gm3 (3)

where the term “1” comes from the feed-forward paths C3-
R3-M3 and C4-R4-M4.

In order to calculate the noise contribution of M1, the balun
impedance characteristic should be analyzed firstly.

A. Balun Model

When the noise voltage of M1 adds to one of the balanced
ports, the balun model can be shown in Fig. 4(a). For the 1:1
balun, the coil ratio is 2:1 and three inductors L1∼L3 satisfy
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Fig. 5. Small signal circuit for NF calculation.

L1 = 4L2 = 4L3. Then the voltage ratio of three ports is
2v : v : (−v). Under conservation of energy it has

v2

Rip
=

(2v)2

RS
+

(−v)2

1/2gm
(4)

So that
Rip =

1
4/RS + 2gm

=
RS

6
(5)

Assuming L1∼L3 are fully coupled, i.e., coupling coeffi-
cient of each two inductors is k = 1. The mutual inductance
of which are M =

√
L1L2 =

√
L1L3 = 2L2 and M ′ =√

L2L3 = L2. We can obtain the de-coupled balun model in
Fig. 4(b), and three current loop formulas are⎧⎨

⎩
jωL1i1 + jωMi2 − jωMi3 = 2v
jωMi1 + jωL2i2 − jωM ′i3 = v

−jωMi1 − jωM ′i2 + jωL3i3 = −v
(6)

Substituting i1 = −2v/RS and assuming L1∼L3 to be infinite
(comparing with RS) yields

i2 − i3 = 4v/RS (7)

From (5) and (7) it can be calculated that

Rin = −v/i3 = −RS/2 (8)

B. NF Calculation

From the small signal circuit as shown in Fig. 5, the noise
contribution of M1,2 can be calculated as

v2
n,M1,2 = (vn,op−vn,on)2 =

(
RS

4
− 1

2gm3

)2

4kTγgm1 (9)

And the noise contribution of M3,4 is

v2
n,M3,4 = 4kTγ/gm3 (10)

So the NF of the total circuit is

F = 1 +
2 · v2

n,M1,2 + 2 · v2
n,M3,4

A2
V · 4kTRS

(11)

Considering the input impedance matching condition (2), and
substituting gm3 = gm1/2 for 14 dB gain, the NF is

Fmin = 1 +
9

200
γ +

4
25

γ ≈ 1 + 0.2γ (12)

It can be seen that the noise contribution of the transcon-
ductance MOST M1,2 is less than γ/20 and is no longer the
dominant noise source. For γ = 4/3, the minimum NF is
about 1 dB.
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Fig. 6. Microphotograph of the chip.
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IV. CHIP IMPLEMENTATION AND MEASUREMENT

The LNA chip is implemented in a 0.18-μm, 1P6M MMRF
CMOS process, the chip microphotograph is shown in Fig.
6. The MIM capacitor is available for coupling capacitors
C1∼C4. The core size of the LNA is 0.25 × 0.3mm2 and
the total chip size including the PADs and ESD MOSTs is
0.52× 0.54mm2. The chip consumes only 4 mA current from
a 1.8-V supply.

The differential outputs are both directly connected and
after an open drain NMOS pairs for measurement purpose.
The former are combined to single-ended by an off-chip 1:4
balun for NF and linearity measurement while the latter are
connected to two 50 Ω resistors and combined to a 1:2 balun
for gain measurement.

The measured gain has a flat value of 15 dB and the S11
(referred to 75 Ω characteristic impedance) is below -24 dB
during the 50M-860MHz frequency range, as shown in Fig.
7. The simulated and measured NFs are shown in Fig. 8.
The measured NF is 2.2∼2.9 dB with an average value 2.5
dB, which is very close to the simulated value 2.3 dB. The
measured input-referred third-order intercept point (IIP3) is
shown in Fig. 9 with a value of 8.3 dBm at two-tone frequency
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TABLE I
SUMMARY OF MEASUREMENT RESULTS AND PERFORMANCE COMPARISON

[3] [7] [8] [9] This Work

CMOS Process 0.12-μm 0.18-μm 0.18-μm 0.18-μm 0.18-μm

Frequency 48-862MHz 470-860MHz 470-870MHz 1.2-11.9GHz 50-860MHz

Gain 17dB 10dB 16dB 9.7dB 15dB

S11 N/A N/A -11dB -11dB -24dB

NF 3dB 5.7dB 4.3dB 4.8dB 2.5dB

IIP3 5.5dBm 10dBm -1.5dBm -6.2dBm 8.3dBm

Power 23mA×2.5V 5.2mA×1.8V 12mA×1.8V 11mA×1.8V 4mA×1.8V

FOM 0.79 0.73 0.072 0.03 12.08

500M & 502MHz. The 1st and 3rd order power are both
attenuated by the output balun while the IIP3 value is same
to the simulated result.

A figure of merit (FOM) is used to compare recent wide-
band LNAs with this work, which is given by [6]

FOM =
Gain · IIP3

Pdc · (F − 1)
· BW

fc
(13)

where the gain and F are in absolute values, IIP3 and Pdc

are in milliwatts, and the bandwidth is replaced by BW/fc.
Summary of the measured results and performance comparison
are shown in Table I. The proposed LNA shows a highest FOM
in all published works.

V. CONCLUSION

In this paper, a differential capacitor-cross-coupled LNA
with a balun-based noise-canceling technique is proposed.
Analysis shows that the noise contribution of the transconduc-
tance MOST can be greatly reduced with three noise-canceling
paths. Measured results shows that the proposed LNA achieves
low NF, high linearity and consumes low power during the
50M-860MHz frequency bandwidth.
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